summaryrefslogtreecommitdiff
path: root/Biz/PodcastItLater/Worker/Processor.py
blob: bdda3e55c7ce0c9b7e284ab2b60baf12b6cfef9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
"""Article processing for podcast conversion."""

# : dep boto3
# : dep botocore
# : dep openai
# : dep psutil
# : dep pydub
# : dep pytest
# : dep pytest-mock
# : dep trafilatura
import Biz.PodcastItLater.Core as Core
import Biz.PodcastItLater.Worker.TextProcessing as TextProcessing
import boto3  # type: ignore[import-untyped]
import concurrent.futures
import io
import json
import logging
import Omni.App as App
import Omni.Log as Log
import Omni.Test as Test
import openai
import operator
import os
import psutil  # type: ignore[import-untyped]
import pytest
import sys
import tempfile
import time
import trafilatura
import typing
import unittest.mock
from botocore.exceptions import ClientError  # type: ignore[import-untyped]
from datetime import datetime
from datetime import timezone
from pathlib import Path
from pydub import AudioSegment  # type: ignore[import-untyped]
from typing import Any

logger = logging.getLogger(__name__)
Log.setup(logger)

# Configuration from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
S3_ENDPOINT = os.getenv("S3_ENDPOINT")
S3_BUCKET = os.getenv("S3_BUCKET")
S3_ACCESS_KEY = os.getenv("S3_ACCESS_KEY")
S3_SECRET_KEY = os.getenv("S3_SECRET_KEY")

# Worker configuration
MAX_ARTICLE_SIZE = 500_000  # 500KB character limit for articles
TTS_MODEL = "tts-1"
TTS_VOICE = "alloy"
MEMORY_THRESHOLD = 80  # Percentage threshold for memory usage
CROSSFADE_DURATION = 500  # ms for crossfading segments
PAUSE_DURATION = 1000  # ms for silence between segments


def check_memory_usage() -> int | Any:
    """Check current memory usage percentage."""
    try:
        process = psutil.Process()
        # this returns an int but psutil is untyped
        return process.memory_percent()
    except (psutil.Error, OSError):
        logger.warning("Failed to check memory usage")
        return 0.0


class ArticleProcessor:
    """Handles the complete article-to-podcast conversion pipeline."""

    def __init__(self, shutdown_handler: Any) -> None:
        """Initialize the processor with required services.

        Raises:
            ValueError: If OPENAI_API_KEY environment variable is not set.
        """
        if not OPENAI_API_KEY:
            msg = "OPENAI_API_KEY environment variable is required"
            raise ValueError(msg)

        self.openai_client: openai.OpenAI = openai.OpenAI(
            api_key=OPENAI_API_KEY,
        )
        self.shutdown_handler = shutdown_handler

        # Initialize S3 client for Digital Ocean Spaces
        if all([S3_ENDPOINT, S3_BUCKET, S3_ACCESS_KEY, S3_SECRET_KEY]):
            self.s3_client: Any = boto3.client(
                "s3",
                endpoint_url=S3_ENDPOINT,
                aws_access_key_id=S3_ACCESS_KEY,
                aws_secret_access_key=S3_SECRET_KEY,
            )
        else:
            logger.warning("S3 configuration incomplete, uploads will fail")
            self.s3_client = None

    @staticmethod
    def extract_article_content(
        url: str,
    ) -> tuple[str, str, str | None, str | None]:
        """Extract title, content, author, and date from article URL.

        Returns:
            tuple: (title, content, author, publication_date)

        Raises:
            ValueError: If content cannot be downloaded, extracted, or large.
        """
        try:
            downloaded = trafilatura.fetch_url(url)
            if not downloaded:
                msg = f"Failed to download content from {url}"
                raise ValueError(msg)  # noqa: TRY301

            # Check size before processing
            if (
                len(downloaded) > MAX_ARTICLE_SIZE * 4
            ):  # Rough HTML to text ratio
                msg = f"Article too large: {len(downloaded)} bytes"
                raise ValueError(msg)  # noqa: TRY301

            # Extract with metadata
            result = trafilatura.extract(
                downloaded,
                include_comments=False,
                include_tables=False,
                with_metadata=True,
                output_format="json",
            )

            if not result:
                msg = f"Failed to extract content from {url}"
                raise ValueError(msg)  # noqa: TRY301

            data = json.loads(result)

            title = data.get("title", "Untitled Article")
            content = data.get("text", "")
            author = data.get("author")
            pub_date = data.get("date")

            if not content:
                msg = f"No content extracted from {url}"
                raise ValueError(msg)  # noqa: TRY301

            # Enforce content size limit
            if len(content) > MAX_ARTICLE_SIZE:
                logger.warning(
                    "Article content truncated from %d to %d characters",
                    len(content),
                    MAX_ARTICLE_SIZE,
                )
                content = content[:MAX_ARTICLE_SIZE]

            logger.info(
                "Extracted article: %s (%d chars, author: %s, date: %s)",
                title,
                len(content),
                author or "unknown",
                pub_date or "unknown",
            )
        except Exception:
            logger.exception("Failed to extract content from %s", url)
            raise
        else:
            return title, content, author, pub_date

    def text_to_speech(
        self,
        text: str,
        title: str,
        author: str | None = None,
        pub_date: str | None = None,
    ) -> bytes:
        """Convert text to speech with intro/outro using OpenAI TTS API.

        Uses parallel processing for chunks while maintaining order.
        Adds intro with metadata and outro with attribution.

        Args:
            text: Article content to convert
            title: Article title
            author: Article author (optional)
            pub_date: Publication date (optional)

        Raises:
            ValueError: If no chunks are generated from text.
        """
        try:
            # Generate intro audio
            intro_text = self._create_intro_text(title, author, pub_date)
            intro_audio = self._generate_tts_segment(intro_text)

            # Generate outro audio
            outro_text = self._create_outro_text(title, author)
            outro_audio = self._generate_tts_segment(outro_text)

            # Use LLM to prepare and chunk the main content
            chunks = TextProcessing.prepare_text_for_tts(text, title)

            if not chunks:
                msg = "No chunks generated from text"
                raise ValueError(msg)  # noqa: TRY301

            logger.info("Processing %d chunks for TTS", len(chunks))

            # Check memory before parallel processing
            mem_usage = check_memory_usage()
            if mem_usage > MEMORY_THRESHOLD - 20:  # Leave 20% buffer
                logger.warning(
                    "High memory usage (%.1f%%), falling back to serial "
                    "processing",
                    mem_usage,
                )
                content_audio_bytes = self._text_to_speech_serial(chunks)
            else:
                # Determine max workers
                max_workers = min(
                    4,  # Reasonable limit to avoid rate limiting
                    len(chunks),  # No more workers than chunks
                    max(1, psutil.cpu_count() // 2),  # Use half of CPU cores
                )

                logger.info(
                    "Using %d workers for parallel TTS processing",
                    max_workers,
                )

                # Process chunks in parallel
                chunk_results: list[tuple[int, bytes]] = []

                with concurrent.futures.ThreadPoolExecutor(
                    max_workers=max_workers,
                ) as executor:
                    # Submit all chunks for processing
                    future_to_index = {
                        executor.submit(self._process_tts_chunk, chunk, i): i
                        for i, chunk in enumerate(chunks)
                    }

                    # Collect results as they complete
                    for future in concurrent.futures.as_completed(
                        future_to_index,
                    ):
                        index = future_to_index[future]
                        try:
                            audio_data = future.result()
                            chunk_results.append((index, audio_data))
                        except Exception:
                            logger.exception(
                                "Failed to process chunk %d",
                                index,
                            )
                            raise

                # Sort results by index to maintain order
                chunk_results.sort(key=operator.itemgetter(0))

                # Combine audio chunks
                content_audio_bytes = self._combine_audio_chunks([
                    data for _, data in chunk_results
                ])

            # Combine intro, content, and outro with pauses
            return ArticleProcessor._combine_intro_content_outro(
                intro_audio,
                content_audio_bytes,
                outro_audio,
            )

        except Exception:
            logger.exception("TTS generation failed")
            raise

    @staticmethod
    def _create_intro_text(
        title: str,
        author: str | None,
        pub_date: str | None,
    ) -> str:
        """Create intro text with available metadata."""
        parts = [f"Title: {title}"]

        if author:
            parts.append(f"Author: {author}")

        if pub_date:
            parts.append(f"Published: {pub_date}")

        return ". ".join(parts) + "."

    @staticmethod
    def _create_outro_text(title: str, author: str | None) -> str:
        """Create outro text with attribution."""
        if author:
            return (
                f"This has been an audio version of {title} "
                f"by {author}, created using Podcast It Later."
            )
        return (
            f"This has been an audio version of {title}, "
            "created using Podcast It Later."
        )

    def _generate_tts_segment(self, text: str) -> bytes:
        """Generate TTS audio for a single segment (intro/outro).

        Args:
            text: Text to convert to speech

        Returns:
            MP3 audio bytes
        """
        response = self.openai_client.audio.speech.create(
            model=TTS_MODEL,
            voice=TTS_VOICE,
            input=text,
        )
        return response.content

    @staticmethod
    def _combine_intro_content_outro(
        intro_audio: bytes,
        content_audio: bytes,
        outro_audio: bytes,
    ) -> bytes:
        """Combine intro, content, and outro with crossfades.

        Args:
            intro_audio: MP3 bytes for intro
            content_audio: MP3 bytes for main content
            outro_audio: MP3 bytes for outro

        Returns:
            Combined MP3 audio bytes
        """
        # Load audio segments
        intro = AudioSegment.from_mp3(io.BytesIO(intro_audio))
        content = AudioSegment.from_mp3(io.BytesIO(content_audio))
        outro = AudioSegment.from_mp3(io.BytesIO(outro_audio))

        # Create bridge silence (pause + 2 * crossfade to account for overlap)
        bridge = AudioSegment.silent(
            duration=PAUSE_DURATION + 2 * CROSSFADE_DURATION
        )

        def safe_append(
            seg1: AudioSegment, seg2: AudioSegment, crossfade: int
        ) -> AudioSegment:
            if len(seg1) < crossfade or len(seg2) < crossfade:
                logger.warning(
                    "Segment too short for crossfade (%dms vs %dms/%dms), using concatenation",
                    crossfade,
                    len(seg1),
                    len(seg2),
                )
                return seg1 + seg2
            return seg1.append(seg2, crossfade=crossfade)

        # Combine segments with crossfades
        # Intro -> Bridge -> Content -> Bridge -> Outro
        # This effectively fades out the previous segment and fades in the next one
        combined = safe_append(intro, bridge, CROSSFADE_DURATION)
        combined = safe_append(combined, content, CROSSFADE_DURATION)
        combined = safe_append(combined, bridge, CROSSFADE_DURATION)
        combined = safe_append(combined, outro, CROSSFADE_DURATION)

        # Export to bytes
        output = io.BytesIO()
        combined.export(output, format="mp3")
        return output.getvalue()

    def _process_tts_chunk(self, chunk: str, index: int) -> bytes:
        """Process a single TTS chunk.

        Args:
            chunk: Text to convert to speech
            index: Chunk index for logging

        Returns:
            Audio data as bytes
        """
        logger.info(
            "Generating TTS for chunk %d (%d chars)",
            index + 1,
            len(chunk),
        )

        response = self.openai_client.audio.speech.create(
            model=TTS_MODEL,
            voice=TTS_VOICE,
            input=chunk,
            response_format="mp3",
        )

        return response.content

    @staticmethod
    def _combine_audio_chunks(audio_chunks: list[bytes]) -> bytes:
        """Combine multiple audio chunks with silence gaps.

        Args:
            audio_chunks: List of audio data in order

        Returns:
            Combined audio data
        """
        if not audio_chunks:
            msg = "No audio chunks to combine"
            raise ValueError(msg)

        # Create a temporary file for the combined audio
        with tempfile.NamedTemporaryFile(
            suffix=".mp3",
            delete=False,
        ) as temp_file:
            temp_path = temp_file.name

        try:
            # Start with the first chunk
            combined_audio = AudioSegment.from_mp3(io.BytesIO(audio_chunks[0]))

            # Add remaining chunks with silence gaps
            for chunk_data in audio_chunks[1:]:
                chunk_audio = AudioSegment.from_mp3(io.BytesIO(chunk_data))
                silence = AudioSegment.silent(duration=300)  # 300ms gap
                combined_audio = combined_audio + silence + chunk_audio

            # Export to file
            combined_audio.export(temp_path, format="mp3", bitrate="128k")

            # Read back the combined audio
            return Path(temp_path).read_bytes()

        finally:
            # Clean up temp file
            if Path(temp_path).exists():
                Path(temp_path).unlink()

    def _text_to_speech_serial(self, chunks: list[str]) -> bytes:
        """Fallback serial processing for high memory situations.

        This is the original serial implementation.
        """
        # Create a temporary file for streaming audio concatenation
        with tempfile.NamedTemporaryFile(
            suffix=".mp3",
            delete=False,
        ) as temp_file:
            temp_path = temp_file.name

        try:
            # Process first chunk
            logger.info("Generating TTS for chunk 1/%d", len(chunks))
            response = self.openai_client.audio.speech.create(
                model=TTS_MODEL,
                voice=TTS_VOICE,
                input=chunks[0],
                response_format="mp3",
            )

            # Write first chunk directly to file
            Path(temp_path).write_bytes(response.content)

            # Process remaining chunks
            for i, chunk in enumerate(chunks[1:], 1):
                logger.info(
                    "Generating TTS for chunk %d/%d (%d chars)",
                    i + 1,
                    len(chunks),
                    len(chunk),
                )

                response = self.openai_client.audio.speech.create(
                    model=TTS_MODEL,
                    voice=TTS_VOICE,
                    input=chunk,
                    response_format="mp3",
                )

                # Append to existing file with silence gap
                # Load only the current segment
                current_segment = AudioSegment.from_mp3(
                    io.BytesIO(response.content),
                )

                # Load existing audio, append, and save back
                existing_audio = AudioSegment.from_mp3(temp_path)
                silence = AudioSegment.silent(duration=300)
                combined = existing_audio + silence + current_segment

                # Export back to the same file
                combined.export(temp_path, format="mp3", bitrate="128k")

                # Force garbage collection to free memory
                del existing_audio, current_segment, combined

                # Small delay between API calls
                if i < len(chunks) - 1:
                    time.sleep(0.5)

            # Read final result
            audio_data = Path(temp_path).read_bytes()

            logger.info(
                "Generated combined TTS audio: %d bytes",
                len(audio_data),
            )
            return audio_data

        finally:
            # Clean up temp file
            temp_file_path = Path(temp_path)
            if temp_file_path.exists():
                temp_file_path.unlink()

    def upload_to_s3(self, audio_data: bytes, filename: str) -> str:
        """Upload audio file to S3-compatible storage and return public URL.

        Raises:
            ValueError: If S3 client is not configured.
            ClientError: If S3 upload fails.
        """
        if not self.s3_client:
            msg = "S3 client not configured"
            raise ValueError(msg)

        try:
            # Upload file using streaming to minimize memory usage
            audio_stream = io.BytesIO(audio_data)
            self.s3_client.upload_fileobj(
                audio_stream,
                S3_BUCKET,
                filename,
                ExtraArgs={
                    "ContentType": "audio/mpeg",
                    "ACL": "public-read",
                },
            )

            # Construct public URL
            audio_url = f"{S3_ENDPOINT}/{S3_BUCKET}/{filename}"
            logger.info(
                "Uploaded audio to: %s (%d bytes)",
                audio_url,
                len(audio_data),
            )
        except ClientError:
            logger.exception("S3 upload failed")
            raise
        else:
            return audio_url

    @staticmethod
    def estimate_duration(audio_data: bytes) -> int:
        """Estimate audio duration in seconds based on file size and bitrate."""
        # Rough estimation: MP3 at 128kbps = ~16KB per second
        estimated_seconds = len(audio_data) // 16000
        return max(1, estimated_seconds)  # Minimum 1 second

    @staticmethod
    def generate_filename(job_id: int, title: str) -> str:
        """Generate unique filename for audio file."""
        timestamp = int(datetime.now(tz=timezone.utc).timestamp())
        # Create safe filename from title
        safe_title = "".join(
            c for c in title if c.isalnum() or c in {" ", "-", "_"}
        ).rstrip()
        safe_title = safe_title.replace(" ", "_")[:50]  # Limit length
        return f"episode_{timestamp}_{job_id}_{safe_title}.mp3"

    def process_job(
        self,
        job: dict[str, Any],
    ) -> None:
        """Process a single job through the complete pipeline."""
        job_id = job["id"]
        url = job["url"]

        # Check memory before starting
        mem_usage = check_memory_usage()
        if mem_usage > MEMORY_THRESHOLD:
            logger.warning(
                "High memory usage (%.1f%%), deferring job %d",
                mem_usage,
                job_id,
            )
            return

        # Track current job for graceful shutdown
        self.shutdown_handler.set_current_job(job_id)

        try:
            logger.info("Processing job %d: %s", job_id, url)

            # Update status to processing
            Core.Database.update_job_status(
                job_id,
                "processing",
            )

            # Check for shutdown before each major step
            if self.shutdown_handler.is_shutdown_requested():
                logger.info("Shutdown requested, aborting job %d", job_id)
                Core.Database.update_job_status(job_id, "pending")
                return

            # Step 1: Extract article content
            Core.Database.update_job_status(job_id, "extracting")
            title, content, author, pub_date = (
                ArticleProcessor.extract_article_content(url)
            )

            if self.shutdown_handler.is_shutdown_requested():
                logger.info("Shutdown requested, aborting job %d", job_id)
                Core.Database.update_job_status(job_id, "pending")
                return

            # Step 2: Generate audio with metadata
            Core.Database.update_job_status(job_id, "synthesizing")
            audio_data = self.text_to_speech(content, title, author, pub_date)

            if self.shutdown_handler.is_shutdown_requested():
                logger.info("Shutdown requested, aborting job %d", job_id)
                Core.Database.update_job_status(job_id, "pending")
                return

            # Step 3: Upload to S3
            Core.Database.update_job_status(job_id, "uploading")
            filename = ArticleProcessor.generate_filename(job_id, title)
            audio_url = self.upload_to_s3(audio_data, filename)

            # Step 4: Calculate duration
            duration = ArticleProcessor.estimate_duration(audio_data)

            # Step 5: Create episode record
            url_hash = Core.hash_url(url)
            episode_id = Core.Database.create_episode(
                title=title,
                audio_url=audio_url,
                duration=duration,
                content_length=len(content),
                user_id=job.get("user_id"),
                author=job.get("author"),  # Pass author from job
                original_url=url,  # Pass the original article URL
                original_url_hash=url_hash,
            )

            # Add episode to user's feed
            user_id = job.get("user_id")
            if user_id:
                Core.Database.add_episode_to_user(user_id, episode_id)
                Core.Database.track_episode_event(
                    episode_id,
                    "added",
                    user_id,
                )

            # Step 6: Mark job as complete
            Core.Database.update_job_status(
                job_id,
                "completed",
            )

            logger.info(
                "Successfully processed job %d -> episode %d",
                job_id,
                episode_id,
            )

        except Exception as e:
            error_msg = str(e)
            logger.exception("Job %d failed: %s", job_id, error_msg)
            Core.Database.update_job_status(
                job_id,
                "error",
                error_msg,
            )
            raise
        finally:
            # Clear current job
            self.shutdown_handler.set_current_job(None)


class TestArticleExtraction(Test.TestCase):
    """Test article extraction functionality."""

    def test_extract_valid_article(self) -> None:
        """Extract from well-formed HTML."""
        # Mock trafilatura.fetch_url and extract
        mock_html = (
            "<html><body><h1>Test Article</h1><p>Content here</p></body></html>"
        )
        mock_result = json.dumps({
            "title": "Test Article",
            "text": "Content here",
        })

        with (
            unittest.mock.patch(
                "trafilatura.fetch_url",
                return_value=mock_html,
            ),
            unittest.mock.patch(
                "trafilatura.extract",
                return_value=mock_result,
            ),
        ):
            title, content, author, pub_date = (
                ArticleProcessor.extract_article_content(
                    "https://example.com",
                )
            )

        self.assertEqual(title, "Test Article")
        self.assertEqual(content, "Content here")
        self.assertIsNone(author)
        self.assertIsNone(pub_date)

    def test_extract_missing_title(self) -> None:
        """Handle articles without titles."""
        mock_html = "<html><body><p>Content without title</p></body></html>"
        mock_result = json.dumps({"text": "Content without title"})

        with (
            unittest.mock.patch(
                "trafilatura.fetch_url",
                return_value=mock_html,
            ),
            unittest.mock.patch(
                "trafilatura.extract",
                return_value=mock_result,
            ),
        ):
            title, content, author, pub_date = (
                ArticleProcessor.extract_article_content(
                    "https://example.com",
                )
            )

        self.assertEqual(title, "Untitled Article")
        self.assertEqual(content, "Content without title")
        self.assertIsNone(author)
        self.assertIsNone(pub_date)

    def test_extract_empty_content(self) -> None:
        """Handle empty articles."""
        mock_html = "<html><body></body></html>"
        mock_result = json.dumps({"title": "Empty Article", "text": ""})

        with (
            unittest.mock.patch(
                "trafilatura.fetch_url",
                return_value=mock_html,
            ),
            unittest.mock.patch(
                "trafilatura.extract",
                return_value=mock_result,
            ),
            pytest.raises(ValueError, match="No content extracted") as cm,
        ):
            ArticleProcessor.extract_article_content(
                "https://example.com",
            )

        self.assertIn("No content extracted", str(cm.value))

    def test_extract_network_error(self) -> None:
        """Handle connection failures."""
        with (
            unittest.mock.patch("trafilatura.fetch_url", return_value=None),
            pytest.raises(ValueError, match="Failed to download") as cm,
        ):
            ArticleProcessor.extract_article_content("https://example.com")

        self.assertIn("Failed to download", str(cm.value))

    @staticmethod
    def test_extract_timeout() -> None:
        """Handle slow responses."""
        with (
            unittest.mock.patch(
                "trafilatura.fetch_url",
                side_effect=TimeoutError("Timeout"),
            ),
            pytest.raises(TimeoutError),
        ):
            ArticleProcessor.extract_article_content("https://example.com")

    def test_content_sanitization(self) -> None:
        """Remove unwanted elements."""
        mock_html = """
        <html><body>
            <h1>Article</h1>
            <p>Good content</p>
            <script>alert('bad')</script>
            <table><tr><td>data</td></tr></table>
        </body></html>
        """
        mock_result = json.dumps({
            "title": "Article",
            "text": "Good content",  # Tables and scripts removed
        })

        with (
            unittest.mock.patch(
                "trafilatura.fetch_url",
                return_value=mock_html,
            ),
            unittest.mock.patch(
                "trafilatura.extract",
                return_value=mock_result,
            ),
        ):
            _title, content, _author, _pub_date = (
                ArticleProcessor.extract_article_content(
                    "https://example.com",
                )
            )

        self.assertEqual(content, "Good content")
        self.assertNotIn("script", content)
        self.assertNotIn("table", content)


class TestTextToSpeech(Test.TestCase):
    """Test text-to-speech functionality."""

    def setUp(self) -> None:
        """Set up mocks."""
        # Mock OpenAI API key
        self.env_patcher = unittest.mock.patch.dict(
            os.environ,
            {"OPENAI_API_KEY": "test-key"},
        )
        self.env_patcher.start()

        # Mock OpenAI response
        self.mock_audio_response: unittest.mock.MagicMock = (
            unittest.mock.MagicMock()
        )
        self.mock_audio_response.content = b"fake-audio-data"

        # Mock AudioSegment to avoid ffmpeg issues in tests
        self.mock_audio_segment: unittest.mock.MagicMock = (
            unittest.mock.MagicMock()
        )
        self.mock_audio_segment.export.return_value = None
        self.audio_segment_patcher = unittest.mock.patch(
            "pydub.AudioSegment.from_mp3",
            return_value=self.mock_audio_segment,
        )
        self.audio_segment_patcher.start()

        # Mock the concatenation operations
        self.mock_audio_segment.__add__.return_value = self.mock_audio_segment

    def tearDown(self) -> None:
        """Clean up mocks."""
        self.env_patcher.stop()
        self.audio_segment_patcher.stop()

    def test_tts_generation(self) -> None:
        """Generate audio from text."""
        # Import ShutdownHandler dynamically to avoid circular import
        import Biz.PodcastItLater.Worker as Worker

        # Mock the export to write test audio data
        def mock_export(buffer: io.BytesIO, **_kwargs: typing.Any) -> None:
            buffer.write(b"test-audio-output")
            buffer.seek(0)

        self.mock_audio_segment.export.side_effect = mock_export

        # Mock OpenAI client
        mock_client = unittest.mock.MagicMock()
        mock_audio = unittest.mock.MagicMock()
        mock_speech = unittest.mock.MagicMock()
        mock_speech.create.return_value = self.mock_audio_response
        mock_audio.speech = mock_speech
        mock_client.audio = mock_audio

        with (
            unittest.mock.patch("openai.OpenAI", return_value=mock_client),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
                return_value=["Test content"],
            ),
        ):
            shutdown_handler = Worker.ShutdownHandler()
            processor = ArticleProcessor(shutdown_handler)
            audio_data = processor.text_to_speech(
                "Test content",
                "Test Title",
            )

        self.assertIsInstance(audio_data, bytes)
        self.assertEqual(audio_data, b"test-audio-output")

    def test_tts_chunking(self) -> None:
        """Handle long articles with chunking."""
        import Biz.PodcastItLater.Worker as Worker

        long_text = "Long content " * 1000
        chunks = ["Chunk 1", "Chunk 2", "Chunk 3"]

        def mock_export(buffer: io.BytesIO, **_kwargs: typing.Any) -> None:
            buffer.write(b"test-audio-output")
            buffer.seek(0)

        self.mock_audio_segment.export.side_effect = mock_export

        # Mock AudioSegment.silent
        # Mock OpenAI client
        mock_client = unittest.mock.MagicMock()
        mock_audio = unittest.mock.MagicMock()
        mock_speech = unittest.mock.MagicMock()
        mock_speech.create.return_value = self.mock_audio_response
        mock_audio.speech = mock_speech
        mock_client.audio = mock_audio

        with (
            unittest.mock.patch("openai.OpenAI", return_value=mock_client),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
                return_value=chunks,
            ),
            unittest.mock.patch(
                "pydub.AudioSegment.silent",
                return_value=self.mock_audio_segment,
            ),
        ):
            shutdown_handler = Worker.ShutdownHandler()
            processor = ArticleProcessor(shutdown_handler)
            audio_data = processor.text_to_speech(
                long_text,
                "Long Article",
            )

        # Should have called TTS for each chunk
        self.assertIsInstance(audio_data, bytes)
        self.assertEqual(audio_data, b"test-audio-output")

    def test_tts_empty_text(self) -> None:
        """Handle empty input."""
        import Biz.PodcastItLater.Worker as Worker

        with unittest.mock.patch(
            "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
            return_value=[],
        ):
            shutdown_handler = Worker.ShutdownHandler()
            processor = ArticleProcessor(shutdown_handler)
            with pytest.raises(ValueError, match="No chunks generated") as cm:
                processor.text_to_speech("", "Empty")

        self.assertIn("No chunks generated", str(cm.value))

    def test_tts_special_characters(self) -> None:
        """Handle unicode and special chars."""
        import Biz.PodcastItLater.Worker as Worker

        special_text = 'Unicode: 你好世界 Émojis: 🎙️📰 Special: <>&"'

        def mock_export(buffer: io.BytesIO, **_kwargs: typing.Any) -> None:
            buffer.write(b"test-audio-output")
            buffer.seek(0)

        self.mock_audio_segment.export.side_effect = mock_export

        # Mock OpenAI client
        mock_client = unittest.mock.MagicMock()
        mock_audio = unittest.mock.MagicMock()
        mock_speech = unittest.mock.MagicMock()
        mock_speech.create.return_value = self.mock_audio_response
        mock_audio.speech = mock_speech
        mock_client.audio = mock_audio

        with (
            unittest.mock.patch("openai.OpenAI", return_value=mock_client),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
                return_value=[special_text],
            ),
        ):
            shutdown_handler = Worker.ShutdownHandler()
            processor = ArticleProcessor(shutdown_handler)
            audio_data = processor.text_to_speech(
                special_text,
                "Special",
            )

        self.assertIsInstance(audio_data, bytes)
        self.assertEqual(audio_data, b"test-audio-output")

    def test_llm_text_preparation(self) -> None:
        """Verify LLM editing."""
        # Test the actual text preparation functions
        chunks = TextProcessing.split_text_into_chunks(
            "Short text", max_chars=100
        )
        self.assertEqual(len(chunks), 1)
        self.assertEqual(chunks[0], "Short text")

        # Test long text splitting
        long_text = "Sentence one. " * 100
        chunks = TextProcessing.split_text_into_chunks(long_text, max_chars=100)
        self.assertGreater(len(chunks), 1)
        for chunk in chunks:
            self.assertLessEqual(len(chunk), 100)

    @staticmethod
    def test_llm_failure_fallback() -> None:
        """Handle LLM API failures."""
        # Mock LLM failure
        with unittest.mock.patch("openai.OpenAI") as mock_openai:
            mock_client = mock_openai.return_value
            mock_client.chat.completions.create.side_effect = Exception(
                "API Error",
            )

            # Should fall back to raw text
            with pytest.raises(Exception, match="API Error"):
                TextProcessing.edit_chunk_for_speech(
                    "Test chunk", "Title", is_first=True
                )

    def test_chunk_concatenation(self) -> None:
        """Verify audio joining."""
        import Biz.PodcastItLater.Worker as Worker

        # Mock multiple audio segments
        chunks = ["Chunk 1", "Chunk 2"]

        def mock_export(buffer: io.BytesIO, **_kwargs: typing.Any) -> None:
            buffer.write(b"test-audio-output")
            buffer.seek(0)

        self.mock_audio_segment.export.side_effect = mock_export

        # Mock OpenAI client
        mock_client = unittest.mock.MagicMock()
        mock_audio = unittest.mock.MagicMock()
        mock_speech = unittest.mock.MagicMock()
        mock_speech.create.return_value = self.mock_audio_response
        mock_audio.speech = mock_speech
        mock_client.audio = mock_audio

        with (
            unittest.mock.patch("openai.OpenAI", return_value=mock_client),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
                return_value=chunks,
            ),
            unittest.mock.patch(
                "pydub.AudioSegment.silent",
                return_value=self.mock_audio_segment,
            ),
        ):
            shutdown_handler = Worker.ShutdownHandler()
            processor = ArticleProcessor(shutdown_handler)
            audio_data = processor.text_to_speech("Test", "Title")

        # Should produce combined audio
        self.assertIsInstance(audio_data, bytes)
        self.assertEqual(audio_data, b"test-audio-output")

    def test_parallel_tts_generation(self) -> None:
        """Test parallel TTS processing."""
        import Biz.PodcastItLater.Worker as Worker

        chunks = ["Chunk 1", "Chunk 2", "Chunk 3", "Chunk 4"]

        # Mock responses for each chunk
        mock_responses = []
        for i in range(len(chunks)):
            mock_resp = unittest.mock.MagicMock()
            mock_resp.content = f"audio-{i}".encode()
            mock_responses.append(mock_resp)

        # Mock OpenAI client
        mock_client = unittest.mock.MagicMock()
        mock_audio = unittest.mock.MagicMock()
        mock_speech = unittest.mock.MagicMock()

        # Make create return different responses for each call
        mock_speech.create.side_effect = mock_responses
        mock_audio.speech = mock_speech
        mock_client.audio = mock_audio

        # Mock AudioSegment operations
        mock_segment = unittest.mock.MagicMock()
        mock_segment.__add__.return_value = mock_segment

        def mock_export(path: str, **_kwargs: typing.Any) -> None:
            Path(path).write_bytes(b"combined-audio")

        mock_segment.export = mock_export

        with (
            unittest.mock.patch("openai.OpenAI", return_value=mock_client),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
                return_value=chunks,
            ),
            unittest.mock.patch(
                "pydub.AudioSegment.from_mp3",
                return_value=mock_segment,
            ),
            unittest.mock.patch(
                "pydub.AudioSegment.silent",
                return_value=mock_segment,
            ),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.Processor.check_memory_usage",
                return_value=50.0,  # Normal memory usage
            ),
        ):
            shutdown_handler = Worker.ShutdownHandler()
            processor = ArticleProcessor(shutdown_handler)
            audio_data = processor.text_to_speech("Test content", "Test Title")

        # Verify all chunks were processed
        self.assertEqual(mock_speech.create.call_count, len(chunks))
        self.assertEqual(audio_data, b"combined-audio")

    def test_parallel_tts_high_memory_fallback(self) -> None:
        """Test fallback to serial processing when memory is high."""
        import Biz.PodcastItLater.Worker as Worker

        chunks = ["Chunk 1", "Chunk 2"]

        def mock_export(buffer: io.BytesIO, **_kwargs: typing.Any) -> None:
            buffer.write(b"serial-audio")
            buffer.seek(0)

        self.mock_audio_segment.export.side_effect = mock_export

        # Mock OpenAI client
        mock_client = unittest.mock.MagicMock()
        mock_audio = unittest.mock.MagicMock()
        mock_speech = unittest.mock.MagicMock()
        mock_speech.create.return_value = self.mock_audio_response
        mock_audio.speech = mock_speech
        mock_client.audio = mock_audio

        with (
            unittest.mock.patch("openai.OpenAI", return_value=mock_client),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
                return_value=chunks,
            ),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.Processor.check_memory_usage",
                return_value=65.0,  # High memory usage
            ),
            unittest.mock.patch(
                "pydub.AudioSegment.silent",
                return_value=self.mock_audio_segment,
            ),
        ):
            shutdown_handler = Worker.ShutdownHandler()
            processor = ArticleProcessor(shutdown_handler)
            audio_data = processor.text_to_speech("Test content", "Test Title")

        # Should use serial processing
        self.assertEqual(audio_data, b"serial-audio")

    @staticmethod
    def test_parallel_tts_error_handling() -> None:
        """Test error handling in parallel TTS processing."""
        import Biz.PodcastItLater.Worker as Worker

        chunks = ["Chunk 1", "Chunk 2"]

        # Mock OpenAI client with one failure
        mock_client = unittest.mock.MagicMock()
        mock_audio = unittest.mock.MagicMock()
        mock_speech = unittest.mock.MagicMock()

        # First call succeeds, second fails
        mock_resp1 = unittest.mock.MagicMock()
        mock_resp1.content = b"audio-1"
        mock_speech.create.side_effect = [mock_resp1, Exception("API Error")]

        mock_audio.speech = mock_speech
        mock_client.audio = mock_audio

        # Set up the test context
        shutdown_handler = Worker.ShutdownHandler()
        processor = ArticleProcessor(shutdown_handler)

        with (
            unittest.mock.patch("openai.OpenAI", return_value=mock_client),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
                return_value=chunks,
            ),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.Processor.check_memory_usage",
                return_value=50.0,
            ),
            pytest.raises(Exception, match="API Error"),
        ):
            processor.text_to_speech("Test content", "Test Title")

    def test_parallel_tts_order_preservation(self) -> None:
        """Test that chunks are combined in the correct order."""
        import Biz.PodcastItLater.Worker as Worker

        chunks = ["First", "Second", "Third", "Fourth", "Fifth"]

        # Create mock responses with identifiable content
        mock_responses = []
        for chunk in chunks:
            mock_resp = unittest.mock.MagicMock()
            mock_resp.content = f"audio-{chunk}".encode()
            mock_responses.append(mock_resp)

        # Mock OpenAI client
        mock_client = unittest.mock.MagicMock()
        mock_audio = unittest.mock.MagicMock()
        mock_speech = unittest.mock.MagicMock()
        mock_speech.create.side_effect = mock_responses
        mock_audio.speech = mock_speech
        mock_client.audio = mock_audio

        # Track the order of segments being combined
        combined_order = []

        def mock_from_mp3(data: io.BytesIO) -> unittest.mock.MagicMock:
            content = data.read()
            combined_order.append(content.decode())
            segment = unittest.mock.MagicMock()
            segment.__add__.return_value = segment
            return segment

        mock_segment = unittest.mock.MagicMock()
        mock_segment.__add__.return_value = mock_segment

        def mock_export(path: str, **_kwargs: typing.Any) -> None:
            # Verify order is preserved
            expected_order = [f"audio-{chunk}" for chunk in chunks]
            if combined_order != expected_order:
                msg = f"Order mismatch: {combined_order} != {expected_order}"
                raise AssertionError(msg)
            Path(path).write_bytes(b"ordered-audio")

        mock_segment.export = mock_export

        with (
            unittest.mock.patch("openai.OpenAI", return_value=mock_client),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.TextProcessing.prepare_text_for_tts",
                return_value=chunks,
            ),
            unittest.mock.patch(
                "pydub.AudioSegment.from_mp3",
                side_effect=mock_from_mp3,
            ),
            unittest.mock.patch(
                "pydub.AudioSegment.silent",
                return_value=mock_segment,
            ),
            unittest.mock.patch(
                "Biz.PodcastItLater.Worker.Processor.check_memory_usage",
                return_value=50.0,
            ),
        ):
            shutdown_handler = Worker.ShutdownHandler()
            processor = ArticleProcessor(shutdown_handler)
            audio_data = processor.text_to_speech("Test content", "Test Title")

        self.assertEqual(audio_data, b"ordered-audio")


class TestIntroOutro(Test.TestCase):
    """Test intro and outro generation with metadata."""

    def test_create_intro_text_full_metadata(self) -> None:
        """Test intro text creation with all metadata."""
        intro = ArticleProcessor._create_intro_text(  # noqa: SLF001
            title="Test Article",
            author="John Doe",
            pub_date="2024-01-15",
        )
        self.assertIn("Title: Test Article", intro)
        self.assertIn("Author: John Doe", intro)
        self.assertIn("Published: 2024-01-15", intro)

    def test_create_intro_text_no_author(self) -> None:
        """Test intro text without author."""
        intro = ArticleProcessor._create_intro_text(  # noqa: SLF001
            title="Test Article",
            author=None,
            pub_date="2024-01-15",
        )
        self.assertIn("Title: Test Article", intro)
        self.assertNotIn("Author:", intro)
        self.assertIn("Published: 2024-01-15", intro)

    def test_create_intro_text_minimal(self) -> None:
        """Test intro text with only title."""
        intro = ArticleProcessor._create_intro_text(  # noqa: SLF001
            title="Test Article",
            author=None,
            pub_date=None,
        )
        self.assertEqual(intro, "Title: Test Article.")

    def test_create_outro_text_with_author(self) -> None:
        """Test outro text with author."""
        outro = ArticleProcessor._create_outro_text(  # noqa: SLF001
            title="Test Article",
            author="Jane Smith",
        )
        self.assertIn("Test Article", outro)
        self.assertIn("Jane Smith", outro)
        self.assertIn("Podcast It Later", outro)

    def test_create_outro_text_no_author(self) -> None:
        """Test outro text without author."""
        outro = ArticleProcessor._create_outro_text(  # noqa: SLF001
            title="Test Article",
            author=None,
        )
        self.assertIn("Test Article", outro)
        self.assertNotIn("by", outro)
        self.assertIn("Podcast It Later", outro)

    def test_extract_with_metadata(self) -> None:
        """Test that extraction returns metadata."""
        mock_html = "<html><body><p>Content</p></body></html>"
        mock_result = json.dumps({
            "title": "Test Article",
            "text": "Article content",
            "author": "Test Author",
            "date": "2024-01-15",
        })

        with (
            unittest.mock.patch(
                "trafilatura.fetch_url",
                return_value=mock_html,
            ),
            unittest.mock.patch(
                "trafilatura.extract",
                return_value=mock_result,
            ),
        ):
            title, content, author, pub_date = (
                ArticleProcessor.extract_article_content(
                    "https://example.com",
                )
            )

        self.assertEqual(title, "Test Article")
        self.assertEqual(content, "Article content")
        self.assertEqual(author, "Test Author")
        self.assertEqual(pub_date, "2024-01-15")


def test() -> None:
    """Run the tests."""
    Test.run(
        App.Area.Test,
        [
            TestArticleExtraction,
            TestTextToSpeech,
            TestIntroOutro,
        ],
    )


def main() -> None:
    """Entry point for the module."""
    if "test" in sys.argv:
        test()
    else:
        logger.info("Processor module loaded")