# Copyright (c) Facebook, Inc. and its affiliates. 
#   
# This source code is licensed under the MIT license found in the 
# LICENSE file in the root directory of this source tree.
import pytest
import torch
import bitsandbytes as bnb

from itertools import product

from bitsandbytes import functional as F

def setup():
    pass

def teardown():
    pass

@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['float', 'half'])
def test_estimate_quantiles(dtype):
    A = torch.rand(1024, 1024, device='cuda')
    A = A.to(dtype)
    code = F.estimate_quantiles(A)

    percs = torch.linspace(1/512, 511/512, 256, device=A.device)
    torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2)

    A = torch.randn(1024, 1024, device='cuda')
    A = A.to(dtype)
    code = F.estimate_quantiles(A)

    quantiles = torch.quantile(A.float(), percs)
    diff = torch.abs(code-quantiles)
    assert (diff > 5e-02).sum().item() == 0


def test_quantile_quantization():
    for i in range(100):
        A1 = torch.randn(1024, 1024, device='cuda')
        code = F.estimate_quantiles(A1)
        C = F.quantize_no_absmax(A1, code)
        A2 = F.dequantize_no_absmax(C, code)
        diff = torch.abs(A1-A2).mean().item()
        assert diff < 0.0075

        A1 = torch.rand(1024, 1024, device='cuda')
        code = F.estimate_quantiles(A1)
        C = F.quantize_no_absmax(A1, code)
        A2 = F.dequantize_no_absmax(C, code)
        diff = torch.abs(A1-A2).mean().item()
        torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0)
        assert diff < 0.001


def test_dynamic_quantization():
    diffs = []
    reldiffs = []
    for i in range(100):
        A1 = torch.randn(1024, 1024, device='cuda')
        C, S = F.quantize(A1)
        A2 = F.dequantize(C, S)
        diff = torch.abs(A1-A2)
        reldiff = diff/torch.abs(A1+1e-8)
        diffs.append(diff.mean().item())
        reldiffs.append(reldiff.mean().item())
        assert diff.mean().item() < 0.0135
    print(sum(diffs)/len(diffs))
    print(sum(reldiffs)/len(reldiffs))

    for i in range(100):
        A1 = torch.rand(1024, 1024, device='cuda')
        C, S = F.quantize(A1)
        A2 = F.dequantize(C, S)
        diff = torch.abs(A1-A2).mean().item()
        torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
        assert diff < 0.004


def test_dynamic_blockwise_quantization():
    diffs = []
    reldiffs = []
    for i in range(100):
        A1 = torch.randn(1024, 1024, device='cuda')
        C, S = F.quantize_blockwise(A1)
        A2 = F.dequantize_blockwise(C, S)
        diff = torch.abs(A1-A2)
        reldiff = diff/torch.abs(A1+1e-8)
        diffs.append(diff.mean().item())
        reldiffs.append(reldiff.mean().item())
        assert diffs[-1] < 0.011
    print(sum(diffs)/len(diffs))
    print(sum(reldiffs)/len(reldiffs))

    diffs = []
    for i in range(100):
        A1 = torch.rand(1024, 1024, device='cuda')
        C, S = F.quantize_blockwise(A1)
        A2 = F.dequantize_blockwise(C, S)
        diff = torch.abs(A1-A2).mean().item()
        assert diff < 0.0033
        diffs.append(diff)
        torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
    #print(sum(diffs)/len(diffs))

def test_dynamic_blockwise_stochastic_quantization():
    diffs = []
    reldiffs = []
    rand = torch.rand(1024).cuda()
    for i in range(100):
        A1 = torch.randn(1024, 1024, device='cuda')
        C1, S1 = F.quantize_blockwise(A1, rand=rand)
        C2, S2 = F.quantize_blockwise(A1)
        # a maximunm distance of quantized values of 1
        torch.testing.assert_allclose(C1, C2, atol=1, rtol=0)
        fraction_smaller = (C1<C2).float().sum()/C1.numel()
        fraction_larger = (C1>C2).float().sum()/C1.numel()
        torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0)



@pytest.mark.parametrize("gtype", [torch.float32, torch.float16], ids=['float', 'half'])
def test_percentile_clipping(gtype):
    gnorm_vec1 = torch.zeros(100, device='cuda')
    gnorm_vec2 = torch.zeros(100, device='cuda')
    n = 4
    step = 0
    percentile=5
    for i in range(1000):
        step += 1
        g = torch.randn(n, n, dtype=gtype, device='cuda')
        gnorm1, clip2, gnorm_scale = F.percentile_clipping(g, gnorm_vec2, step, percentile=percentile)
        assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2/gnorm1

        gnorm2 = torch.norm(g.float())
        if step == 1:
            gnorm_vec1[:] = gnorm2
        else:
            gnorm_vec1[step % 100] = gnorm2

        vals, idx = torch.sort(gnorm_vec1)
        clip1 = vals[percentile]

        torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2))
        torch.testing.assert_allclose(clip1, clip2)
        torch.testing.assert_allclose(gnorm1, gnorm2)


def test_stable_embedding():
    layer = bnb.nn.StableEmbedding(1024, 1024)
    layer.reset_parameters()


def test_dynamic_blockwise_quantization_cpu():
    #A1 = torch.randn(1024, 1024, device='cpu')
    #code = F.create_dynamic_map()
    #for i in range(1000):
    #    C, S = F.quantize_blockwise(A1, code=code)
    #    A2 = F.dequantize_blockwise(C, S)

    for i in range(10):
        # equivalence with GPU blockwise quantization
        A1 = torch.randn(1024, 1024, device='cpu')
        C1, S1 = F.quantize_blockwise(A1)
        C2, S2 = F.quantize_blockwise(A1.cuda())
        torch.testing.assert_allclose(S1[0], S2[0].cpu())
        # there seems to be some issues with precision in CUDA vs CPU
        # not all elements are usually close, with couple off elements in a million
        idx = torch.isclose(C1, C2.cpu())
        assert (idx==0).sum().item() < 15


    diffs = []
    reldiffs = []
    for i in range(10):
        A1 = torch.randn(1024, 1024, device='cpu')
        C, S = F.quantize_blockwise(A1)
        A2 = F.dequantize_blockwise(C, S)
        diff = torch.abs(A1-A2)
        reldiff = diff/torch.abs(A1+1e-8)
        diffs.append(diff.mean().item())
        reldiffs.append(reldiff.mean().item())
        assert diffs[-1] < 0.011
    #print(sum(diffs)/len(diffs))
    #print(sum(reldiffs)/len(reldiffs))

    diffs = []
    for i in range(10):
        A1 = torch.rand(1024, 1024, device='cpu')
        C, S = F.quantize_blockwise(A1)
        A2 = F.dequantize_blockwise(C, S)
        diff = torch.abs(A1-A2).mean().item()
        assert diff < 0.0033
        diffs.append(diff)
        torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
    #print(sum(diffs)/len(diffs))


def test_histogram():
    dim1, dim2 = 32, 32
    source = torch.rand(dim1, dim2, device='cuda')
    idx1 = torch.randint(0, 255, size=(dim1, dim2), device='cuda').int()
    idx2 = torch.randint(0, 255, size=(dim1, dim2), device='cuda').int()
    histogram1 = torch.zeros((256, 256)).cuda()
    histogram2 = torch.zeros((256, 256)).cuda()

    F.histogram_scatter_add_2d(histogram2, idx1, idx2, source)

    for i in range(dim1):
        for j in range(dim2):
            histogram1[idx1[i, j].item(), idx2[i, j].item()] += source[i, j]

    torch.testing.assert_allclose(histogram1, histogram2)
    torch.testing.assert_allclose(histogram1.sum(), source.sum())